November 5

Get Clickers and whiteboards

Chapter 8: Multiparticle systems

Review single particle system: Projectile

MARTOR = MITI +MITI +---

KH = ZK!

= Km + Kvc1

L) = 1 Mo Vcm

Some as

point partile

stoken

Ponderable: Two particles

1) 2ks, relocate < 3,5,0> mg

2) 3kg, relock 2-4,2,0) m/s

$$\nabla_{cm}? : \nabla_{cm} = \frac{2 < 3,5,07 + 3 < -4,2,0}{2+3} \nabla_{cm} = < -12,32,0 > 0$$

Kty?" Kty = 1 m, 42+ 2 mzv= 64J

Khan? : Khan = 1 Mor Var = 1 (n,+m2) Van = 29.2J Krel?: Krel = Khot - Kinn = 34.8J

V1 - V1 - Van - 11

Momentum and Momentum Principle for multiparticle systems

String attached and wound around disk 1, attached to center of disk 2. Pull each with same force F for 3 seconds.

- A) 1 will move farther than 2
- B) 2 will move farther than 1
- (C)1 and 2 will move the same

Even: Change in energy of point putility System

Point patich: $\Delta E = Wf R = W$ $\Delta K = W = F d cm$ Red System: $\Delta E = Wf R = W$ $\Delta E = \Delta K_{mn} + \Delta K_{red} = F(d_{enf}L)$ $\Delta K_{red} = F L$

Ponderable: Skater

Stater ships at rest Pushes with five F,

Many central was

Even: Real System for DE=?

Odd: Point pertile for WE=?

Ers: DE=W+X=O DE=0=DKoms+DEis

DEnt = - DKms = -Fd

Odd: DE=WYO

△Kmm = Fd

Q1 Through what distance did the force act on the Point Particle system? Initial: At rest, spring unstretched

- A) 0.03 m
- B) 0.04 m
- C) 0.07 m
- D) 0.08 m
- E) 0.10 m

Q2 Through what distance did the force act on the Real system? Initial: At rest, spring unstretched

- A) 0.03 m
- B) 0.04 m
- C) 0.07 m
- D) 0.08 m
- E) 0.10 m

Q3 Which is the energy equation for the Point Particle system? Initial: At rest, spring unstretched

- (A) $\Delta K_{\text{trans}} = F^*(0.07 \text{ m})$ B) $\Delta K_{\text{trans}} = F^*(0.08 \text{ m})$ C) $\Delta K_{\text{trans}} + \Delta K_{\text{tib}} + \Delta K_{\text{spring}} = F^*(0.07 \text{ m})$ D) $\Delta K_{\text{trans}} + \Delta K_{\text{vib}} + \Delta K_{\text{spring}} = F^*(0.08 \text{ m})$

You pull up with constant force F

For the Point Particle system, what was the total external work?

- A) F*b + (-mg)*bB) F*a + (-mg)*bC) F*(a+b) + (-mg)*(b)D) F*(a+b) + (-mg)*(a+b)

For the Real system, what was the total external work?

$$A) F*b + (-mg)*b$$

$$B) F*a + (-mg)*b$$

$$(-mg)^*(b)$$

A)
$$F*b + (-mg)*b$$

B) $F*a + (-mg)*b$
C) $F*(a+b) + (-mg)*(b)$
D) $F*(a+b) + (-mg)*(a+b)$

Q6: A skater pushes straight away from a wall. She pushes on the wall with a force whose magnitude is F, so the wall pushes on her with a force F (in the direction of her motion). As she moves away from the wall, her center of mass moves a distance d. What is the correct form of the energy principle for the **real system** consisting of the skater?

A)
$$\Delta K_{\text{trans}} + \Delta E_{\text{internal}} = Fd$$

B)
$$\Delta K_{\text{trans}} + \Delta E_{\text{internal}} = -Fd$$

$$\Delta K_{\text{trans}} + \Delta E_{\text{internal}} = 0$$

D)
$$\Delta K_{\text{trans}} = Fd$$

E)
$$\Delta K_{\text{trans}} = -Fd$$

Vall Les not

Q7: A skater pushes straight away from a wall. She pushes on the wall with a force whose magnitude is F, so the wall pushes on her with a force F (in the direction of her motion). As she moves away from the wall, her center of mass moves a distance d. What is the correct form of the energy principle for the **point** particle system for the skater?

A)
$$\Delta K_{\text{trans}} + \Delta E_{\text{internal}} = Fd$$

B)
$$\Delta K_{\text{trans}} + \Delta E_{\text{internal}} = -Fd$$

C)
$$\Delta K_{\text{trans}} + \Delta E_{\text{internal}} = 0$$

$$D) \Delta K_{\text{trans}} = Fd$$

b)
$$\Delta K_{\text{trans}} = Fd$$

E) $\Delta K_{\text{trans}} = -Fd$